
Apply Hourly Rolling Mean to Horizon Height
Source:R/compute_horizon_rollmean.R
compute_horizon_rollmean.Rd
Compute azimuth interval for a theoretical hour based on sun position and apply a rolling mean with this computed window size on horizon height.
Examples
# Load the station metadata including location and level
stn <- get_metadata_frost(stationid = 18700)
# Compute maximum horizon
horizon <- compute_horizon_max(stn, step = 1, f_plot_polygon = FALSE)
#> [1] "Process: 18700 - 260966.8/6652718.0 - dtm - 100/1 - path: data/dem"
#> [1] "Load demo file: data/dem/18700_dtm_25833_d00100m_1.0m.tif"
#> [1] "Process: 18700 - 260966.8/6652718.0 - dom - 100/1 - path: data/dem"
#> [1] "Load demo file: data/dem/18700_dom_25833_d00100m_1.0m.tif"
#> [1] "Process: 18700 - 260966.8/6652718.0 - dtm - 20000/20 - path: data/dem"
#> [1] "Load demo file: data/dem/18700_dtm_25833_d20000m_20.0m.tif"
#> Over-riding projection check
#> Importing raster map <elev>...
#> 0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30% 33% 36% 39% 42% 45% 48% 51% 54% 57% 60% 63% 66% 69% 72% 75% 78% 81% 84% 87% 90% 93% 96% 99% 100%
#> SpatRaster read into GRASS using r.in.gdal from memory
#> Over-riding projection check
#> Importing raster map <elev>...
#> 0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30% 33% 36% 39% 42% 45% 48% 51% 54% 57% 60% 63% 66% 69% 72% 75% 78% 81% 84% 87% 90% 93% 96% 99% 100%
#> SpatRaster read into GRASS using r.in.gdal from memory
#> Over-riding projection check
#> Importing raster map <elev>...
#> 0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30% 33% 36% 39% 42% 45% 48% 51% 54% 57% 60% 63% 66% 69% 72% 75% 78% 81% 84% 87% 90% 93% 96% 99% 100%
#> SpatRaster read into GRASS using r.in.gdal from memory
# Apply rolling mean to horizon height with a computed hourly window
horizon["horizon_mean"] <- compute_horizon_rollmean(stn, horizon)